
Rich Graham

September 2017

MPI and Modern Network Hardware

© 2017 Mellanox Technologies 2

The views expressed here reflect my personal views,
and not Mellanox’s point of view

© 2017 Mellanox Technologies 3

What is MPI ?

 Library interface for

• Moving data

• Operating on data that is moved

• Supports commonly used data patterns

• Provide ancillary services needed to support such capabilities

• The “glue” of a parallel job

 User-level interface to control such data movement

 Not: programming model

© 2017 Mellanox Technologies 4

Challenges

© 2017 Mellanox Technologies 5

Characteristics of a Good User-Level Communication API

 High-level and portable

 Can stand the test of time

 Easy to use, without having to know the details of an underlying hardware or software platform

 Interface objects are implementation neutral

 Provides the ability to pass information to and from the communication library

© 2017 Mellanox Technologies 6

Goals for a High Performance Communication Library Interface

 Performance

 Performance

 Performance

 Obtains good performance over a wide range of hardware configurations

 Obtains good performance for a wide range of user applications

 Is not aware of application context, unless some sort of hints are passed to it

© 2017 Mellanox Technologies 7

Characteristics of Emerging Hardware Systems

 Many communication end-points

 Heterogeneous architectures

 Computation can occur at the edges (CPU, Storage) and the interior (Network)

 Rich single process environment

• Multiple compute engines

• Large latency differences between memories (some memory may not even be directly addressable)

• Different compute engines may have exclusive access to some memories (GPU memory, Scratch-Pad

memory)

 With all of this need to allow an application to express their communication needs in a simple

manner

 Want to be able to use these capabilities in an effective manner

© 2017 Mellanox Technologies 8

Barriers

© 2017 Mellanox Technologies 9

Computation on the Fly

© 2017 Mellanox Technologies 10

 Current states: opportunistic

• Collective communication provides a hook for a small number of such operations

- In the switches

- In the HCA

- Network-level coordination

- ?

• Simple objects can be mapped outside of host memory and opiated on via MPI API’s

- Atomic updates

• Split address and computational capabilities, such as GPUs

- Challenge to express communication in a manner that reflects the “split” nature of the MPI process (or is this even the

right way to think about it)

 Need to think of communication and computation as part of a single operation to be optimized

 Need to be able to express

• Communication and work to do on this data

© 2017 Mellanox Technologies 11

Limited Context for Communication

© 2017 Mellanox Technologies 12

 Current state:

• Some ability to pass information to the library via

- Info Objects

• No ability to express

- Object durability, such as

 One-use data type

 Collective operations that are used very rarely

- Capabilities to be used

 Collective operations

- Nature of an application

 Highly unbalanced

 Can we do better ?

• Is persistence a good example?

© 2017 Mellanox Technologies 13

Data Path Opacity

© 2017 Mellanox Technologies 14

Data Buffers

 MPI_ALLOC_MEM(size, info, baseptr)

• IN size size of memory segment in bytes (non-negative integer)

• IN info info argument (handle)

• OUT baseptr pointer to beginning of memory segment allocated

• Issue: no output (opaque) meta-data to describe the region

 User created buffers (malloc, heap, mmap, …)

• Issue: no way to associate meta-data with these regions

© 2017 Mellanox Technologies 15

Point-to-point Send Function

 MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

• IN buf initial address of send buffer (choice)

• IN count number of elements in send buffer (non-negative integer)

• IN datatype datatype of each send buffer element (handle)

• IN dest rank of destination (integer)

• IN tag message tag (integer)

• IN comm communicator (handle)

• OUT request communication request (handle)

• Issue: no way to pass in/out “buf” meta-data

© 2017 Mellanox Technologies 16

Collective Function

 MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

• IN sendbuf starting address of send buffer (choice)

• OUT recvbuf starting address of receive buffer (choice)

• IN count number of elements in send buffer (non-negative integer)

• IN datatype data type of elements of send buffer (handle)

• IN op operation (handle)

• IN comm communicator (handle)

 Issue: no way to pass in/out meta-data information on buffers

© 2017 Mellanox Technologies 17

Consequences

 Communication libraries do create meta-data for tracking communication

 Buffer meta-data is looked up for each access in the data path

 Possible solutions:

• Rely on hardware-level On-Demand-Paging to setup memory for communication, if not ready (first access

can be very expensive)

• Enhance interfaces to allow for opaque meta-data to be passed between MPI functions

© 2017 Mellanox Technologies 18

Limited Pattern Expresiveness

© 2017 Mellanox Technologies 19

Communication Patterns

 Supported

• Point-to-point

• Collective

 Missing

• Send: one to several (not full communicator)

• Send: several one-to-ones

• Receive: One/some of several

• Receive: Eureka

• ????

Thank You

